
Rich Graham

September 2017

MPI and Modern Network Hardware

© 2017 Mellanox Technologies 2

The views expressed here reflect my personal views,
and not Mellanox’s point of view

© 2017 Mellanox Technologies 3

What is MPI ?

 Library interface for

• Moving data

• Operating on data that is moved

• Supports commonly used data patterns

• Provide ancillary services needed to support such capabilities

• The “glue” of a parallel job

 User-level interface to control such data movement

 Not: programming model

© 2017 Mellanox Technologies 4

Challenges

© 2017 Mellanox Technologies 5

Characteristics of a Good User-Level Communication API

 High-level and portable

 Can stand the test of time

 Easy to use, without having to know the details of an underlying hardware or software platform

 Interface objects are implementation neutral

 Provides the ability to pass information to and from the communication library

© 2017 Mellanox Technologies 6

Goals for a High Performance Communication Library Interface

 Performance

 Performance

 Performance

 Obtains good performance over a wide range of hardware configurations

 Obtains good performance for a wide range of user applications

 Is not aware of application context, unless some sort of hints are passed to it

© 2017 Mellanox Technologies 7

Characteristics of Emerging Hardware Systems

 Many communication end-points

 Heterogeneous architectures

 Computation can occur at the edges (CPU, Storage) and the interior (Network)

 Rich single process environment

• Multiple compute engines

• Large latency differences between memories (some memory may not even be directly addressable)

• Different compute engines may have exclusive access to some memories (GPU memory, Scratch-Pad

memory)

 With all of this need to allow an application to express their communication needs in a simple

manner

 Want to be able to use these capabilities in an effective manner

© 2017 Mellanox Technologies 8

Barriers

© 2017 Mellanox Technologies 9

Computation on the Fly

© 2017 Mellanox Technologies 10

 Current states: opportunistic

• Collective communication provides a hook for a small number of such operations

- In the switches

- In the HCA

- Network-level coordination

- ?

• Simple objects can be mapped outside of host memory and opiated on via MPI API’s

- Atomic updates

• Split address and computational capabilities, such as GPUs

- Challenge to express communication in a manner that reflects the “split” nature of the MPI process (or is this even the

right way to think about it)

 Need to think of communication and computation as part of a single operation to be optimized

 Need to be able to express

• Communication and work to do on this data

© 2017 Mellanox Technologies 11

Limited Context for Communication

© 2017 Mellanox Technologies 12

 Current state:

• Some ability to pass information to the library via

- Info Objects

• No ability to express

- Object durability, such as

 One-use data type

 Collective operations that are used very rarely

- Capabilities to be used

 Collective operations

- Nature of an application

 Highly unbalanced

 Can we do better ?

• Is persistence a good example?

© 2017 Mellanox Technologies 13

Data Path Opacity

© 2017 Mellanox Technologies 14

Data Buffers

 MPI_ALLOC_MEM(size, info, baseptr)

• IN size size of memory segment in bytes (non-negative integer)

• IN info info argument (handle)

• OUT baseptr pointer to beginning of memory segment allocated

• Issue: no output (opaque) meta-data to describe the region

 User created buffers (malloc, heap, mmap, …)

• Issue: no way to associate meta-data with these regions

© 2017 Mellanox Technologies 15

Point-to-point Send Function

 MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

• IN buf initial address of send buffer (choice)

• IN count number of elements in send buffer (non-negative integer)

• IN datatype datatype of each send buffer element (handle)

• IN dest rank of destination (integer)

• IN tag message tag (integer)

• IN comm communicator (handle)

• OUT request communication request (handle)

• Issue: no way to pass in/out “buf” meta-data

© 2017 Mellanox Technologies 16

Collective Function

 MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

• IN sendbuf starting address of send buffer (choice)

• OUT recvbuf starting address of receive buffer (choice)

• IN count number of elements in send buffer (non-negative integer)

• IN datatype data type of elements of send buffer (handle)

• IN op operation (handle)

• IN comm communicator (handle)

 Issue: no way to pass in/out meta-data information on buffers

© 2017 Mellanox Technologies 17

Consequences

 Communication libraries do create meta-data for tracking communication

 Buffer meta-data is looked up for each access in the data path

 Possible solutions:

• Rely on hardware-level On-Demand-Paging to setup memory for communication, if not ready (first access

can be very expensive)

• Enhance interfaces to allow for opaque meta-data to be passed between MPI functions

© 2017 Mellanox Technologies 18

Limited Pattern Expresiveness

© 2017 Mellanox Technologies 19

Communication Patterns

 Supported

• Point-to-point

• Collective

 Missing

• Send: one to several (not full communicator)

• Send: several one-to-ones

• Receive: One/some of several

• Receive: Eureka

• ????

Thank You

